Simulation Tools for the Study of Solar Energetic Particle Events

Neus Agueda University of Barcelona, Spain

Bochum 12-16 September 2011

Workshop "Cosmic Rays and the Heliospheric Plasma Environment"

Solar Near-Relativistic Electron Events

- Simulations of Interplanetary Particle Transport
- **6** Tools for the Investigation of SEP Events

Figure Credit: Säm Krucker (SSL/UCB)

Solar Flare Associations

• Lin (1985) showed that electron events were nearly always accompanied by solar type III radio bursts:

2-100 keV ISEE3 measurements, 326 electron events $2-10$ is the V ISEE α is the V ISEE α is the V ISEE α is the V ISEE α

 \rightarrow In-situ electron events are produced by solar flares

For $30-300$ keV electrons (speed $0.3-0.8c$):

- Kru
ker et al (1999) ; 58 events, $\Delta t_{\text{max}} \simeq 30$ min
- Haggerty & Roelof (2002) ; 79 events, $\langle \Delta t \rangle = 9.5$ min

 \rightarrow Up to 30 min delays between $t_{\rm Sun}$ and $t_{\rm III}$

Solar Injection Onset Time

Assuming a nominal path length:

 $-L = 1.2$ AU

From a velo
ity dispersion analysis:

- S
atter-free transport - Simultaneous injection
	- Energy-independent L
- High instrumental background
- Energy-dependent injection
- Interplanetary scattering \rightarrow Numerical simulations have shown that the estimated injection times can be in error by several minutes (Sáiz et al. 2005; Lintunen & Vainio 2004)

Assumptions:

Problems:

(Kahler & Ragot 2006)

Delayed Injections

Are in-situ electrons and the electrons at the origin of the type III emission the same? origin of the type III emission the same?

- ¹ Flares. Parti
le propagation ee
ts along magnetic field lines (Cane 2003). magneti eld lines (Cane 2003).
- **2** Coronal shocks (observed as type II radio bursts) and/or by large-scale coronal EIT waves in conjunction with CMEs (Krucker et al. 1999; Haggerty & Roelof 2002; Simnett 2002; Kahler et al. 2007)
- ³ Reconfiguration (reconnection) of the low corona behind the coronal shock/CME (Maia & Pi
k 2004; Klein et al. 2005).

Signatures of Acceleration Process

• Both solar flares and coronal shocks are possible candidates for sources of energetic heliospheric electron events:

Miller (2000), Petrosian & Liu (2004), Dalla & Browning (2006), Drake et al. (2006)

Burgess (2005), Giacalone (2005), Mann et al. (2001, 2003)

CME Shocks

Flare vs. Shock Associations

Correlations between electron peak intensities and Correlations between ele
tron peak intensities and

Associations with fast (\geq 1000 km s $^{-1})$ CMEs and solar type II radio bursts (Kahler et al. 2005):

- 37%/17% with m/dh type II bursts
- 67% of all type II burst can be associated with a NR electron event
- 50% of the NR electron events can be associated with fast CMEs

400 600 800 CME velocity (km/sec

Injection Timescales

True II Rouse Personnel $\overline{17}$ 13 ÷ 13 $\ddot{}$

am durations <0.3.1

Beam durations 0.4-1.7

Beam durations >2 h

- Kahler et al. (2007) compared electron beam-like PAD times with type II burst associations:
	- 80 electron events
	- Wind/3DP measurements
- Only 1 of 14 short-duration (≤0.3 hr) beam-PAD events was asso
iated with a m/dh type II burst.
- But 13 of 16 long-duration (\geq 2 hr) events were asso
iated with a m/dh type II burst.
- \rightarrow Two kinds of solar injection: one impulsive at well connected flare sites and the other extended at broad CME-driven shocks

Angular Extent of Events

NR electron events observed when ACE and Ulysses were broadly NR ele
tron events observed when ACE and Ulysses were broadly $(\sim80^{\circ})$ <code>separated</code> (e.g. Simnett 2003, Maclennan et al. 2003, Lario et al. 2004).) separated (e.g. Simnett 2003, Ma
lennan et al. 2003, Lario et al. 2004).

- Despite the latitudinal and longitudinal separations of the two S/C, all events seen at Ulysses were also seen at ACE.
	- Late particle injection (CME-driven shock)?
	- Different transport conditions?
	- Particle diffusion perpendicular to the mean IMF?
- Most of the small electron events observed by ACE were not observed Ulysses.

Lario et al. (2003)

Angular Extent of Events

- AR W38, $\widehat{BEA} = 82^\circ$
- Mazur et al. (2000). Particles do not spread in large range of longitudes.
- PFSS model an not explain the spread

Interplanetary Transport of SEPs

Focused transport equation (Roelof 1969) Fo
used transport equation (Roelof 1969)

$$
\frac{\partial f}{\partial t} + v\mu \frac{\partial f}{\partial z} + \frac{1-\mu^2}{2L}v\frac{\partial f}{\partial \mu} - \frac{\partial}{\partial \mu}\left(D_{\mu\mu}\frac{\partial f}{\partial \mu}\right) = q(z,\mu,t) \qquad (1)
$$

- Gyration around and streaming along the IMF
- Focusing and mirroring: $\frac{1-\mu^2}{B} = \text{const.}$
- Diffusion in pitch-angle \implies spatial diffusion (scattering off magnetic irregularities)

Pitch-angle diffusion coefficient

- Diffusion coefficient (Jokipii 1966)
- standard model of particle scattering
	- Small irregularities (QLT)
	- Transverse and axially symmetri fluctuations

-
$$
P(k) \propto k^{-q}
$$

$$
D_{\mu\mu} = \frac{\nu(\mu)}{2}(1-\mu^2) \mid \nu(\mu) = \nu_0 |\mu|^{q-1}
$$

• Parallel mean free path (Hasselmann & Wibberenz 1968,1970) $\lambda_{||}=\frac{3\nu}{8}$ $\frac{3v}{8} \int_{-1}^{1}$ $(1-\mu^2)^2$ $\frac{-\mu}{D_{\mu\mu}}$ d $\mu = \frac{3\nu}{4}$ $\frac{3v}{4} \int_{-1}^{1}$ $(1-\mu^2)$ $\frac{1-\mu}{\nu(\mu)}d\mu$

isotropic scattering $(\nu=\nu_0)\Rightarrow\lambda_{||}=\frac{\nu}{\nu_0}$

 $\lambda_{\sf r}=\lambda_{||} \cos^2\psi={\rm const.}$ (Palmer 1982, Kallenrode et al. 1992, Ruffolo et al. 1998)

Parti
le Transport Models

• Finite-difference numerical method:

Heras et al. 1992, Ruolo 1995, Lario et al. 1998, Hatzky & Kallenrode 1999, Dröge 2000

↑ Advantages: omputationally fast

• Monte Carlo method:

Ko
harov et al. 1998, Zhang 2000, Li et al. 2003, Maia et al. 2007, Agueda et al. 2008

↑ Advantages: tra
k of individual parti
les

Green's functions for particle transport

- The results of the simulations are expressed in terms of
	- differential intensities at 1 AU
	- resulting from a delta injection close to the Sun - resulting from a delta inje
	tion lose to the Sun
	- normalized to one particle injected per steradian - normalized to one parti
	le inje
	ted per steradian

Pitch-angle scattering vs. injection. I

Pitch-angle scattering vs. injection. II

Observation of SEPs

In-situ Sectored Intensities

In-situ Sectored Intensities

20 / 31

In-situ Sectored Intensities

• First-order anisotropy

$$
\mathsf{F}(\mu)=A_0+A_1\mu+...
$$

- Angular response of a sector
	- Isotropic distr. seen by a - Isotropi distr. seen by a rotating conical aperture

 $-$ IMF vector \rightarrow Telescope view boundaries

Inversion Method

 \bullet Modeled sectored intensities $M^s_I(t;\lambda_I)$ in sector s and energy interval / can be expressed as interval la control de la

$$
M_I^s(t; \lambda_r) = \int_{T_1}^{T_2} dt' g_I^s(t, t'; \lambda_r) q(t')
$$

where

$$
g^s_l(t,t') {=} \int_0^\pi d\xi \int_0^{2\pi} d\phi R^s(\xi,\phi) \tfrac{1}{\Delta E_l} \int_{E_l}^{E_l+\Delta E_l} dE \ G(\mu(\xi,\phi,t),t-t',E)
$$

• We determine the injection function of NR electrons solving the equation

$$
||\vec{J}-\mathbf{g}\cdot\vec{q}||\sim 0
$$

subject to the constraint that $q_i \geq 0 \ \forall j$

• We use the non-negative least squares (NNLS) method of Lawson & Hanson (1974).

Modeling solar NR electron events

The 2000 May 1 near-relativistic electron event

Results of the Event Inversion

Best-fit parameters:

- $\lambda_r = 0.9$ AU
- The injection profile shows two omponents

(Agueda et al. 2008)

Results of the Event Inversion

Extending the sample $(+10$ events)

Agueda et al. (2009):

Transport conditions:

 $\lambda_{r} = 0.9$ AU; 2/11 λ_{r} < 0.2 AU; 9/11

Injection components:

Solar Injection

Prompt Prompt

- beginning within the rise phase of the soft X-ray flux \mathcal{L} and \mathcal{L}
- at low energies, within 10 min of the type III radio emission
- accompanied by hard X-ray emission

 $log N_e = 0.54(\pm 0.08)$ $log I_x + 37.3(\pm 0.4)$

Delayed

- \bullet beginning after the peak of the soft X-ray flux
- associated with intermittent radio emissions at the height of the CME leading edge or below
- in some cases, also with type II radio bursts

Summary Summary

- Simulation-based analysis have provided conclusive evidence that the injection of heliospheric NR electrons is related to both flares and coronal shocks
- The derived injection profiles show two types of injection episodes: short $(15 min)$ and extended $(>1 \text{ h})$.
- The timing of the short injection episodes agrees with the timing of the hard X-rays and radio type III bursts.
- Extended injection episodes seem to be related to intermittent radio emissions at the height of the CME leading edge or below, and type Il bursts.
- We conclude that there is a continuous spectrum of scenarios that allow for either flare or coronal shock injection, or both, and that this can occur both under strong scattering conditions and under almost scatter-free propagation conditions.

SEPServer FP7 Project

SEPSERVER: Data Services and Analysis Tools for Solar SEPSERVER: Data Servi
es and Analysis Tools for Solar Energetic Particle Events and Related Electromagnetic Energeti Parti
le Events and Related Ele
tromagneti Emissions

Start date: January 2011, Duration: 3 years Start date: January 2011, Duration: 3 years

- Collaborative Project funded through the European 7th Framework Programme.
- It is oordinated by the University of Helsinki.
- 11 European partners: UH, CAU, CNRS, UB, U. Turku, UO,UNI WUE, NOA, UOI, AIP, DHC
- • Several collaborating partners from Europe and the US.

SEPServer FP7 Project

The SEPServer project will produce an Internet server for The SEPServer proje
t will produ
e an Internet server for the investigation of the origin and transport of SEPs.

It will provide: It will provide the control of the c

- in-situ SEP and plasma data for several missions (SOHO, ACE, Wind, Ulysses, STEREO and Helios)
- related electromagnetic observations and state-of-the-art analysis methods
- a comprehensive catalog of SEP events observed over solar cycle 23
- numeri
al simulation results and inversion methods for SEP event analysis

