# Simulation Tools for the Study of Solar Energetic Particle Events

#### Neus Agueda University of Barcelona, Spain

Bochum 12-16 September 2011

Workshop "Cosmic Rays and the Heliospheric Plasma Environment"



### **1** Solar Near-Relativistic Electron Events

- **2** Simulations of Interplanetary Particle Transport
- **3** Tools for the Investigation of SEP Events
- 4 Examples
- **5** SEPServer FP7 Project



Figure Credit: Säm Krucker (SSL/UCB)

### **Solar Flare Associations**

• Lin (1985) showed that electron events were nearly always accompanied by solar type III radio bursts:

2-100 keV ISEE3 measurements, 326 electron events

 $\rightarrow\,$  In-situ electron events are produced by solar flares

For **30-300 keV** electrons (speed 0.3-0.8*c*):

- Krucker et al (1999) ;  $\overline{58}$  events,  $\Delta t_{max} \simeq 30$  min
- Haggerty & Roelof (2002) ; 79 events,  $\langle \Delta t \rangle = 9.5 \text{ min}$

ightarrow Up to 30 min delays between  $t_{
m Sun}$  and  $t_{
m HII}$ 



### Solar Injection Onset Time



Assumptions:

#### Problems:

(Kahler & Ragot 2006)

Assuming a nominal path length:



From a velocity dispersion analysis:



- Scatter-free transport
- L = 1.2 AU

- Simultaneous injection
- Energy-independent L
- High instrumental background
- Energy-dependent injection
- Interplanetary scattering → Numerical simulations have shown that the estimated injection times can be in error by several minutes (Sáiz et al. 2005; Lintunen & Vainio 2004)

### **Delayed Injections**

Are in-situ electrons and the electrons at the origin of the type III emission the same?

- Flares. Particle propagation effects along magnetic field lines (Cane 2003).
- Coronal shocks (observed as type II radio bursts) and/or by large-scale coronal EIT waves in conjunction with CMEs (Krucker et al. 1999; Haggerty & Roelof 2002; Simnett 2002; Kahler et al. 2007)
- 3 Reconfiguration (reconnection) of the low corona behind the coronal shock/CME (Maia & Pick 2004; Klein et al. 2005).



# Signatures of Acceleration Process

• Both solar flares and coronal shocks are possible candidates for sources of energetic heliospheric electron events:

Miller (2000), Petrosian & Liu (2004), Dalla & Browning (2006), Drake et al. (2006)

Burgess (2005), Giacalone (2005), Mann et al. (2001, 2003)



CME Shocks



|                                                                                                                   | Flares                             | Coronal Shocks            |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------|
| <ol> <li>Correlations with event parameters?</li> <li>Injection timescales?</li> <li>Extent of events?</li> </ol> | EM fluxes<br><hr<br>narrow</hr<br> | CME speed<br>>hr<br>broad |

### Flare vs. Shock Associations

#### Correlations between electron peak intensities and

| microwave peak fluxes | $r \sim 0.4$ | (Haggerty & Roelof 2002) |
|-----------------------|--------------|--------------------------|
| SXR peaks             | $r \sim 0.5$ | (Haggerty & Roelof 2002) |
| SXR fluences          | $r \sim 0.6$ | (Gopalswamy et al. 2004) |
| HXR fluences          | $r \sim 0.7$ | (Kahler et al. 1994)     |
| CME speeds            | $r \sim 0.6$ | (Haggerty & Roelof 2002) |

Associations with fast ( $\geq$ 1000 km s<sup>-1</sup>) CMEs and solar type II radio bursts (Kahler et al. 2005):

- 37%/17% with m/dh type II bursts
- 67% of all type II burst can be associated with a NR electron event
- 50% of the NR electron events can be associated with fast CMEs



400 600 800 1000 CME velocity (km/sec)

### **Injection Timescales**



|                          | BEAM DURATION |                           |      |
|--------------------------|---------------|---------------------------|------|
| TYPE II BURST DESCRIPTOR | Short*        | Intermediate <sup>b</sup> | Long |
| n/dh Type II             | 1             | 17                        | 13   |
| No Type II               | 13            | 27                        | 3    |

<sup>a</sup> Beam durations ≤0.3 hr

<sup>b</sup> Beam durations 0.4-1.7 ht

<sup>6</sup> Beam durations ≥2 hr

- Kahler et al. (2007) compared electron beam-like PAD times with type II burst associations:
  - 80 electron events
  - Wind/3DP measurements
- Only 1 of 14 short-duration (≤0.3 hr) beam-PAD events was associated with a m/dh type II burst.
- But 13 of 16 long-duration (≥2 hr) events were associated with a m/dh type II burst.
- → Two kinds of solar injection: one impulsive at well connected flare sites and the other extended at broad CME-driven shocks.

### Angular Extent of Events

NR electron events observed when ACE and Ulysses were broadly  $(\sim 80^\circ)$  separated (e.g. Simnett 2003, Maclennan et al. 2003, Lario et al. 2004).

- Despite the latitudinal and longitudinal separations of the two S/C, all events seen at *Ulysses* were also seen at *ACE*.
  - Late particle injection (CME-driven shock)?
  - Different transport conditions?
  - Particle diffusion perpendicular to the mean IMF?
- Most of the small electron events observed by ACE were not observed Ulysses.





Lario et al. (2003)

#### Angular Extent of Events





- AR W38,  $\widehat{BEA} = 82^{\circ}$
- Mazur et al. (2000): Particles do not spread in large range of longitudes.
- PFSS model can not explain the spread

#### Interplanetary Transport of SEPs

Focused transport equation (Roelof 1969)

$$\frac{\partial f}{\partial t} + v\mu \frac{\partial f}{\partial z} + \frac{1 - \mu^2}{2L} v \frac{\partial f}{\partial \mu} - \frac{\partial}{\partial \mu} \left( D_{\mu\mu} \frac{\partial f}{\partial \mu} \right) = q(z, \mu, t)$$
(1)

- Gyration around and streaming along the IMF
- Focusing and mirroring:  $\frac{1-\mu^2}{B} = \text{const.}$
- Diffusion in pitch-angle ⇒ spatial diffusion (scattering off magnetic irregularities)







### Pitch-angle diffusion coefficient

- Diffusion coefficient (Jokipii 1966)
- standard model of particle scattering
  - Small irregularities (QLT)
  - Transverse and axially symmetric fluctuations

- 
$$P(k) \propto k^{-q}$$

$$D_{\mu\mu} = rac{
u(\mu)}{2}(1-\mu^2)$$
 ;  $u(\mu) = 
u_0 |\mu|^{q-1}$ 



• Parallel mean free path (Hasselmann & Wibberenz 1968,1970)

$$\lambda_{||} = \frac{3\nu}{8} \int_{-1}^{1} \frac{(1-\mu^2)^2}{D_{\mu\mu}} d\mu = \frac{3\nu}{4} \int_{-1}^{1} \frac{(1-\mu^2)}{\nu(\mu)} d\mu$$

isotropic scattering ( $u = 
u_0$ )  $\Rightarrow \lambda_{||} = \frac{\nu}{
u_0}$ 

 $\lambda_{r}=\lambda_{||}\cos^{2}\psi= ext{const.}$  (Palmer 1982, Kallenrode et al. 1992, Ruffolo et al. 1998)

### Particle Transport Models

• Finite-difference numerical method:

Heras et al. 1992, Ruffolo 1995, Lario et al. 1998, Hatzky & Kallenrode 1999, Dröge 2000

↑ Advantages: computationally fast

• Monte Carlo method:

Kocharov et al. 1998, Zhang 2000, Li et al. 2003, Maia et al. 2007, Agueda et al. 2008

↑ Advantages: track of individual particles

#### Green's functions for particle transport

- The results of the simulations are expressed in terms of
  - differential intensities at 1 AU
  - resulting from a delta injection close to the Sun
  - normalized to one particle injected per steradian



### Pitch-angle scattering vs. injection. I



#### Pitch-angle scattering vs. injection. II



## Observation of SEPs



#### In-situ Sectored Intensities



#### In-situ Sectored Intensities





20/31

#### In-situ Sectored Intensities



• First-order anisotropy

$$F(\mu) = A_0 + A_1 \mu + \dots$$



- Angular response of a sector
  - Isotropic distr. seen by a rotating conical aperture



- IMF vector  $\rightarrow$  Telescope view boundaries



#### **Inversion** Method

 Modeled sectored intensities M<sup>s</sup><sub>l</sub>(t; λ<sub>r</sub>) in sector s and energy interval l can be expressed as

$$M_l^s(t;\lambda_r) = \int_{T_1}^{T_2} dt' g_l^s(t,t';\lambda_r)q(t')$$

where

$$g_{I}^{s}(t,t') = \int_{0}^{\pi} d\xi \int_{0}^{2\pi} d\phi R^{s}(\xi,\phi) \frac{1}{\Delta E_{I}} \int_{E_{I}}^{E_{I} + \Delta E_{I}} dE \ G(\mu(\xi,\phi,t),t-t',E)$$

• We determine the injection function of NR electrons solving the equation

$$||\vec{J} - \mathbf{g} \cdot \vec{q}|| \sim 0$$

subject to the constraint that  $q_j \ge 0 \ \forall j$ 

• We use the non-negative least squares (NNLS) method of Lawson & Hanson (1974).

#### Modeling solar NR electron events

| Assumptions | Parametrized injection profile                | Obtain it from the fit       |
|-------------|-----------------------------------------------|------------------------------|
|             |                                               |                              |
| Data        | Spin-averaged intensities and $<\!\!\mu\!\!>$ | Pitch-angle<br>distributions |

Best fit

Eye ball

Define an objective goodness-of-fit estimator

Dröge (2000), Bieber et al. (2001) Maia et al. (2007) Kartavykh et al. (2007), Maia et al. (2007) Agueda et al. (2008,2009)

#### The 2000 May 1 near-relativistic electron event



#### **Results of the Event Inversion**

#### Best-fit parameters:

- $\lambda_r = 0.9 \text{ AU}$
- The injection profile shows two components

| Short    | $\sim$ 2.5 min | ~75% | hard-X ray           |
|----------|----------------|------|----------------------|
|          |                |      | type     radio burst |
| Extended | $\sim$ 80 min  | ~25% | white-light CME      |
|          |                |      | radio emission       |
|          |                |      |                      |

(Agueda et al. 2008)



#### **Results of the Event Inversion**





# Extending the sample (+10 events)

Agueda et al. (2009):

**Transport conditions:** 

 $\lambda_r =$  0.9 AU; 2/11  $\lambda_r <$  0.2 AU; 9/11

#### Injection components:





# **Solar Injection**

#### Prompt

- beginning within the rise phase of the soft X-ray flux
- at low energies, within 10 min of the type III radio emission
- accompanied by hard X-ray emission



#### Delayed

- beginning after the peak of the soft X-ray flux
- associated with intermittent radio emissions at the height of the CME leading edge or below
- in some cases, also with type II radio bursts



# Summary

- Simulation-based analysis have provided conclusive evidence that the injection of heliospheric NR electrons is related to both flares and coronal shocks.
- The derived injection profiles show two types of injection episodes: short (< 15 min) and extended (> 1 h).
- The timing of the short injection episodes agrees with the timing of the hard X-rays and radio type III bursts.
- Extended injection episodes seem to be related to intermittent radio emissions at the height of the CME leading edge or below, and type II bursts.
- We conclude that there is a continuous spectrum of scenarios that allow for either flare or coronal shock injection, or both, and that this can occur both under strong scattering conditions and under almost scatter-free propagation conditions.

# SEPServer FP7 Project



**SEPSERVER**: Data Services and Analysis Tools for Solar Energetic Particle Events and Related Electromagnetic Emissions

Start date: January 2011, Duration: 3 years





- Collaborative Project funded through the European 7th Framework Programme.
- It is coordinated by the University of Helsinki.
- 11 European partners: UH, CAU, CNRS, UB, U. Turku, UO,UNI WUE, NOA, UOI, AIP, DHC
- Several collaborating partners from Europe and the US.

# SEPServer FP7 Project

The SEPServer project will produce an Internet server for the investigation of the origin and transport of SEPs.

It will provide:

- in-situ SEP and plasma data for several missions (SOHO, ACE, Wind, Ulysses, STEREO and Helios)
- related electromagnetic observations and state-of-the-art analysis methods
- a comprehensive catalog of SEP events observed over solar cycle 23
- numerical simulation results and inversion methods for SEP event analysis







