Spatial Gradients of Galactic Cosmic Ray Protons in the Inner Heliosphere

PAMELA and Ulysses Observations

Jan Gieseler¹, Mirko Boezio², Marco Casolino³, Nicola De Simone³, Valeria Di Felice³, Bernd Heber¹, Matteo Martucci³

¹IEAP, CAU Kiel, Kiel, Germany

²INFN, Structure of Trieste and Physics Department of University of Trieste, Italy ³INFN, Structure of Rome "Tor Vergata" and Physics Department of University of Rome "Tor Vergata", Italy

Bochum, 13 September 2011

Gieseler et al.

Spatial Gradients of GCR Protons

Outline

Introduction

Missions and instruments

Calculation of the gradients

Summary

Work in progress

Gieseler et al.

Spatial Gradients of GCR Protons

Introduction

Gieseler et al.

Spatial Gradients of GCR Protons

Solar modulation of Galactic Cosmic Rays (GCR)

Spatial Gradients of GCR Protons

Expected behavior for A>0 and A<0-magnetic epoch

- Expected intensity variation wrt radial distance: Gradients always positive
- Expected intensity variation wrt latitude: Gradients positive or negative

Positive particles

Spatial Gradients of GCR Protons

Distribution of space probes

- IMP, ACE, Sampex, SOHO, STEREO, neutron monitors, and PAMELA (1 AU)
- ► Ulysses (1.3<R<5 AU, -80.2°<θ<80.2°)</p>
- Voyager 1 (R>100 AU)
- Voyager 2 (R>80 AU)

Spatial Gradients of GCR Protons

Missions and instruments

Gieseler et al.

Spatial Gradients of GCR Protons

The PAMELA experiment

- PAMELA = Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics
- Satellite-borne apparatus designed to study charged particles, in particular antiparticles, in the cosmic radiation

Cosmic-ray particle	Energy range	
Antiprotons	80 MeV-190 GeV	
Positrons	50 MeV-270 GeV	
Electrons	50 MeV-400 GeV	
Protons	80 MeV–700 GeV	
Electrons + positrons	up to 2 TeV	
Light nuclei (up to $Z = 6$)	100 MeV/ <i>n</i> -250 GeV/ <i>n</i>	
Antinuclei	Sensitivity 95% CL	
Antihelium/helium ratio	of the order of 10^{-7}	

- Built by the Wizard collaboration (RUS, IT, GER and SWE)
- Launched on 15 June 2006 at Bajkonur
- Polar elliptical orbit, inclination 70.0°, altitude 350-610 km
- Height \sim 1.3 m, total mass 470 kg

Gieseler et al.

Spatial Gradients of GCR Protons

The Ulysses mission

Gieseler et al.

Spatial Gradients of GCR Protons

Kiel Electron Telescope (KET)

- D1, D2: semiconductor detectors (0.5mm)
- C1, C2: Cerenkov detectors (aerogel/lead)
- S1, S2: plastic scintillation detectors
- PM1 PM4: photomultiplier
- A: anticoincidence (plastic scintillator)

Spatial Gradients of GCR Protons

Coincidence channels

Name	Logic	primary	energy	Response ¹ -	sectors
		particles	(MeV/N)	factor (cm ² cr MeV/N)	
			(1016 + /14)	(cm si wev/w)	
K1 (P1)	D11 D12 C10 D20 C20 S20 A0	р	2.7-5.4	17.6	—
		р	23.1 - 34.1	71.5	
	R 10 R 10 R 10 R 10 R 10 R 10	He	2.3-2.7	2.6	
K21-K28 (P4)	D12 D13 C10 D20 C20 S20 A0	р Не	27.60	115	8
		He	20.4-34.2	89.7	
K3 (P32)	D11 D20 D12 C10 C20 S20 A0	р	34-125	70 ^d	_
K34 (P116)	D10 D20 S20 D12 C10 C20 A0	p (F)	125-250	+	_
		p (B)	160-260	152 ^d	
		He	126-190		
K12 (P190)	D10 D20 S20 C20 D11 C10 D21 C21 A0	р	250-2200	3300	
K10 (P4000)	D10 C10 D20 S20 C20 D11 C11 D21 C21 A0	р	>2200	1	—
750 (14)	D 18 C10 D 00 C00 000 40		F 4 00 1	11.0	
K2 (A4)	D13 C10 D20 C20 S20 A0	He	5.4-23.1	115 =0.0d	_
K33 (A32) K20 (A116)	D12 D21 D13 C10 C20 S20 A0	He He (F)	34-125	70.04	_
K29 (A110)	D12 D21 320 D13 C10 C20 A0	He (F)	155.225	*	_
K31 (A190)	D11 D21 S20 C20 D12 C10 A0	He	250-2100	3200	_
K30 (A4000)	D11 C10 D21 S20 C20 D12 C11 C21 A0	He	>2100	Ι	_
. ,			-		
K13-20 (E4)	D10 C10 D20 D11 C11 C20 S20 A0	e	4-9	tbd	8
K11 (E12)	D10 C10 D20 C20 D11 C11 D21 S20 A0	e	9-500	tbd	—
K32 (E300)	D10 C10 D20 C21 S20 D11 C11 D21 A0+A1	e	>500	tbd	—

Spatial Gradients of GCR Protons

Calculation of the gradients

Gieseler et al.

Spatial Gradients of GCR Protons

Calculation of the gradients

- Assume that temporal and spatial variations can be separated
- ► $J_U(R, t, r, \theta)$ intensity at Ulysses (r, θ) at time t and rigidity R
- ► $J_E(R, t, r_E, \theta_E)$ intensity measured by PAMELA at Earth
- ► G_r(R) radial gradient
- $G_{\theta}(R)$ latitudinal gradient
- $\Delta r = r_U r_E$ radial distance

► $\Delta \theta = |\theta_U| - |\theta_E|$ - latitudinal distance (assume symmetric distr.)

$$J_U = J_E \cdot \exp(G_r \cdot \Delta r) \cdot \exp(G_\theta \cdot \Delta \theta)$$

$$\Rightarrow \ln\left[\frac{J_U}{J_E}\right] = G_r \cdot \Delta r + G_\theta \cdot \Delta \theta$$

$$\Rightarrow \frac{1}{\Delta r} \ln\left[\frac{J_U}{J_E}\right] = G_r + G_\theta \cdot \frac{\Delta \theta}{\Delta r}$$

Gieseler et al.

Spatial Gradients of GCR Protons

Intensity profile (\sim 1.7 GV protons)

Spatial Gradients of GCR Protons

Temporal variation

 t_1, t_2 : Ulysses at comparable position in southern and northern hemisphere

Assume that the gradients are the same for both periods

$$\begin{aligned} J_U &= J_E \cdot \exp\left(G_r \cdot \Delta r\right) \cdot \exp\left(G_\theta \cdot \Delta \theta\right) \\ \Rightarrow \quad \frac{J_{\mathrm{U}}(R, t_1, r_1, \theta_1)}{J_{\mathrm{U}}(R, t_2, r_2, \theta_2)} &= \frac{J_{\mathrm{E}}(R, t_1, r_E, \theta_E)}{J_{\mathrm{E}}(R, t_2, r_E, \theta_E)} \end{aligned}$$

Gieseler et al.

Spatial Gradients of GCR Protons

Temporal variation

Proton flux 2006 / Proton flux 2008

Gieseler et al.

Spatial Gradients of GCR Protons

Calculation of the gradients (\sim 1.7 GV protons)

Spatial Gradients of GCR Protons

Calculation of the gradients (\sim 1.7 GV protons)

Spatial Gradients of GCR Protons

Calculation of the gradients

Gieseler et al.

Spatial Gradients of GCR Protons

Summary

Gieseler et al.

Spatial Gradients of GCR Protons

Summary

- Investigation period: July 2006 July 2009 (A<0)</p>
- \blacktriangleright Proton rigidities: \sim 1.2 1.8 GV
- Radial gradients:
 - Within expectations
- Latitudinal gradients:
 - Correct trend ($G_{\theta} < 0$) but probably too big

Work in progress

Gieseler et al.

Spatial Gradients of GCR Protons

Pulse Height Analysis (PHA)

- Energy loss e in semiconductor detectors (D1, D2) and number of photons in light detectors (C1, C2, S2) are transmitted (for a statistical amount of measured particles)
- Calculate from them the *pulse height numbers*:

$$n = \frac{\log{(A \cdot \epsilon)} - B}{C}$$

(A, B, and C are detector and electronic specific constants)

Spatial Gradients of GCR Protons

Helium

Gieseler et al.

Spatial Gradients of GCR Protons

Redefining PHA-energy conversion

- Take quiet time measurements and GEANT3 simulation
- Fold simulation (E⁰) with corresponding forcefield spectrum
- Calculate χ² as qualitative difference between both curves
- Run over set of conversion parameters and minimize χ²

Spatial Gradients of GCR Protons

Redefining PHA-energy conversion

D1:

D2:

Gieseler et al.

Spatial Gradients of GCR Protons