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Introduction to CMEs
Model classification

Selected results
Motivation for studying (I)CMEs

Coronal mass ejection (CME):
large blob of solar plasma (m ≈ 1013 kg,
v0 ≈ 20...3000 km/s) ejected spacewards

Why care about CMEs?

1 Major manifestation of solar activity
2 CMEs relate to many other fields of solar physics

• flares↔ CMEs
• particle acceleration at shocks
• global flux removal, ...

3 Commercial application: “space weather”
• safety concerns for astronautics,
• satellite communication failures, etc.

⇒ urgent need to predict outbreak and IP evolution!
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Introduction to CMEs
Model classification

Selected results

Self-consistent (MHD) modeling
Numerics and physical realization

What makes CME modeling a demanding task?

1 The CME phenomenon spans vast temporal and spatial
scales. ⇒ Need to specialize on selected aspects/phases.

2 Initial (pre-eruptive) conditions are poorly known (just
surface magnetograms, coronagraph images, in-situ obs.)

3 CMEs exhibit diverse structure, esp. when interacting.
∼10(!) morphological classes [Howard et al. 1985].

4 CME propagation is inherently 3D.

Focus of MHD-based CME models can be on
• initiation/eruption [not this talk]
• propagation (expansion, trajectory, acceleration/travel time)
• interaction (with the solar wind/CIRs, other CMEs, and/or

planetary magnetospheres)
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Introduction to CMEs
Model classification

Selected results

Self-consistent (MHD) modeling
Numerics and physical realization

(Simplifying) analytical CME models are few in number.
Space weather prediction relies on large-scale numerical MHD.

CSEM [Tóth 2005] CISM [Odstrcil 2008]

Major (technical) challenge: High resolution requirements due to
1 need to track features� R� across > 214 R� = 1 AU
2 Lack of symmetry
solar min: B� is 2D, but CME expansion ∦ dipolar axis

solar max: B� is 3D itself
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Introduction to CMEs
Model classification
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Self-consistent (MHD) modeling
Numerics and physical realization

Solution #1: Ignore ϕ dependence anyway.
• expansion along polar axis:

interesting but somewhat unrealistic
• expansion near ecliptic

(implies torus-shaped "CME")
2D/3D comparison [Jacobs et al. 2007]

Solution #2: Performance tuning
• specially tailored grids, esp. spherical

with radially varying ∆r = ∆r(r)

• mesh refinement techniques
[BATS-R-US, AMRVAC, ...]

• multi-scale models [e.g. Riley et al. 2006]

(NB: ‖u‖ > vA after a few R�)
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Introduction to CMEs
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Selected results

Self-consistent (MHD) modeling
Numerics and physical realization

Existing models can be classified by...

1 Geometry (2-D / 2.5-D / 3-D)

2 Method of initiation (of 2nd order for large r )
(shearing footpoints / flux emergence / density-driven)

3 Goal: "principal" study (idealized setting, few parameters)
vs. realistic forecast (as much physics as possible)

4 Realization of boundary conditions at r = R� (analytic
or observationally derived, e.g. from magnetograms)
and the background solar wind
• uniform [e.g. Vandas et al. 1998, 2002],
• structured [Odstrcil & Pizzo 1999; Manchester et al. 2004],
• realistic [Hayashi et al. 2006; Shen et al. 2007]
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Self-consistent (MHD) modeling
Numerics and physical realization

Further categories (cont’d): Heating functions

5 Included physics, e.g. treatment of the energy budget:
• isothermal γ = 1 or adiabatic γ = γ0 ≤ 5/3 (p ∼ ργ)

• γ = γ(r) [e.g. Fahr et al. ’76, Lugaz et al. ’07] ( - not good for shocks)

• γ = 5/3 + complete energy equation with heating term(s)

1 Ad-hoc heating [e.g. Hartle & Barnes 1970, Manchester et al. 2004]

e.g. Q(r) = q(r) [T0 − T ] ⇒ T → T0 "target temp."
fitted to steady-state ( - biased towards T0)

2 S = u1 · ∇
(

p1ρ
−5/3
1

)
with (·)1 from γ = 1.05 run

[Pomoell, Vainio, Kissmann 2011]
3 Consistent Alfvénic wave heating.
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Self-consistent (MHD) modeling
Numerics and physical realization

SW heating by Alfvén waves

Concept:
Waves are excited near R�,
travel along B, get shifted up
in f , and dissipate at fh.
Variables: either scalar fields
ε± or full spectrum P(f , r, t).

→ see Bidzina’s talk (next)

∂tP +∇ · [(u± vA) P] + (P/2)∇ · u = −∂f F gives

• wave pressure pw(r) = (1/2)
∫ fh(r)

f0
P(f , r) df =̂(ε+ + ε−)/2

• heating term Qw = F (fh, r)− P(fh(r), r) [u± vA] · ∇fh(r)
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Some findings from principal models

1 Some indication of approximately
self-similar evolution [e.g. Kleimann et al. ’09]

2 CME development strongly depends on
• background SW (higher speeds in fast,

dilute winds) [Jacobs et al. 2005] and
• the initial polarity w.r.t. Bsw, influencing

the CME’s speed, shape, and deflection.

[Chane et
al. 2006]
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Comparison to (satellite) observations
Coronagraph (LASCO) in situ (ACE @ L1)

SWMF (3D, MDI init) VAC (2.5D, analyt. init)
Lugaz et al. [2007] Chané et al. [2008]

NB: Models are quite sensitive to chosen parameters
[e.g. Schrijver et al. 2008], but published results often
consider only limited parameter ranges.
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Conclusions

• CMEs are a very diverse class of heliospheric transients.
• 3D MHD simulations are indispensable to model a CME’s

life cycle, with the long-term goal of reliable forecasts.
• Modeling results/predictions crucially depend on initial

parameters and physical effects included.
• Models benefit from high-quality S/C data input to

1 constrain IC/BCs and
2 allow for a posteriori verification of results.

• Simple models can be useful, provided their limitations are
taken into account. → Importance of comparative studies!

Jens Kleimann MHD modeling of the inner heliosphere and its transients


	Introduction to CMEs
	Motivation for studying (I)CMEs

	Model classification
	Self-consistent (MHD) modeling
	Numerics and physical realization

	Selected results
	Some principal findings
	Connecting to observations
	Summary/ Conclusions


