A stochastic approach to galactic propagation

I. Büsching¹, **A. Kopp**², F. Effenberger¹, R. D. Strauss³, M. S. Potgieter³, H. Fichtner¹

¹Theoretische Physik IV, Ruhr-Universität Bochum

2 IEAP, Christian-Albrechts-Universität zu Kiel, Germany

³Centre for Space Research, North-West University, Potchefstroom, South Africa

Bochum, September 12th 2011

Galactic Propagation of Cosmic Rays (CRs)

Problem:

Supernovae are point-like, transient sources

 \triangleright 3D time dependent propagation model needed

- \blacktriangleright Numerical expensive
- \triangleright Good knowledge of local sources is needed

Stochastic Differential Equations (SDE)

Idea: solve transport equation (TPE) by propagating a large ensemble of pseudo particles and bin the results to obtain the distribution function *N*

Time-forward propagation: write TPE in conservative form:

$$
\frac{\partial N}{\partial t} = -\sum_{i} \frac{\partial}{\partial x_{i}} (A_{i}(\mathbf{x}, t)N) + \frac{1}{2} \sum_{i,j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} (C_{i,j}(\mathbf{x}, t)N)
$$

- \triangleright plus: source (S) and loss (L) terms
- \triangleright available also in spherical and cylindrical coordinates
- \triangleright general symmetric diffusion tensor C with all non-diagonal elements being allowed to be $\neq 0$
- \triangleright sum includes the momentum ρ as a fourth dimension

Stochastic Differential Equations (SDE)

Time-backward propag.: write TPE in non-conservative form:

$$
\frac{\partial N}{\partial t} = -\sum_{i} A_{i}(\mathbf{x}, t) \frac{\partial N}{\partial x_{i}} + \frac{1}{2} \sum_{i,j} C_{i,j}(\mathbf{x}, t) \frac{\partial^{2} N}{\partial x_{i} \partial x_{j}}
$$

Both forms of the TPE are equivalent to the set of SDEs:

$$
d\mathbf{x} = \mathbf{A}(\mathbf{x},t) dt + \mathbf{B}(\mathbf{x},t) \cdot d\mathbf{W}(t)
$$

with:

$$
\underline{\boldsymbol{C}} = \underline{\boldsymbol{B}} \cdot \underline{\boldsymbol{B}}^T
$$

$$
d\mathbf{W}(t)=\sqrt{dt}\,\mathbf{n}(t),
$$

where **n**(*t*) is a vector of normally distributed random numbers.

Stochastic Differential Equations (SDE)

\blacktriangleright Very stable

- \triangleright No numerical grid needed
- ^I Choice of time step ∆*t* determines spatial resolution
- \blacktriangleright Embarrassingly parallel problem
- \triangleright Solvable forward/backward in time, depending on problem

\blacktriangleright Literature:

Gardiner, Handbook of Stochastic Methods; Øksendal, Stochastic Differential Equations; Kloeden & Platen, Numerical Solution of Stochastic Differential Equations

SDE for 3D Galactic propagation

SDE code so far solves the equation:

$$
\frac{\partial N}{\partial t} - S = \nabla \cdot (\underline{\mathbf{K}} \cdot \nabla N - \mathbf{V}N) - \frac{\partial}{\partial p} (\dot{p}N) - LN
$$

- \triangleright all elements of **K**, **V**, p , S , and L depend on **r**, p and t (4+1 D), i.e. code capable of calculation in 1,2 or 3 spatial dimensions, momentum (or energy) and time
- \triangleright implemented in C, version for scalar diffusion adapted to run on GPU with CUDA
- S is a real particle source or a boundary condition
- L is taken into account by a "path amplit[ud](#page-5-0)[e"](#page-7-0) [\(](#page-5-0)[w](#page-6-0)[ei](#page-7-0)[gh](#page-0-0)[ti](#page-13-0)[ng](#page-0-0)[\)](#page-13-0)

െ പ

Spectral variation inside and outside of spiral arms

cosmic ray proton flux inside and outside spiral arms:

 \blacktriangleright Diffusion coefficient:

$$
= \begin{cases} k_0 \left(\frac{\zeta}{\zeta_0}\right)^{0.6} & \text{for } \zeta > \zeta_0 \\ k_0 \left(\frac{\zeta}{\zeta_0}\right)^{-0.48} & \text{for } \zeta < \zeta_0 \end{cases}
$$

$$
k_0 = 0.027 \,\text{kpc}^2\text{Myr}^{-1}
$$

$$
\zeta_0 = 4 \,\text{GV}/c
$$

$$
\blacktriangleright H = 4 \,\text{kpc}
$$

k =

 \blacktriangleright 130001 transient point sources clustering in spiral arms

KOD KARD KED KED BE YOUR

(see Büsching & Potgieter 2008)

Comparison with Büsching & Potgieter 2008

Temporal variation of the cosmic ray proton flux at 10 GeV (inside spiral arm).

イロト イ伊 トイヨ トイヨト

 QQ

Spectral variation inside and outside of spiral arms

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\langle \end{array} \right. \square \end{array} \right. \right. \end{array} \right. \end{array} \right.$ 2990 ÷

Spatial variable diffusion coefficient

- \blacktriangleright Level of turbulence higher inside spiral arms (inarm region) than in interarm region
- \blacktriangleright Particles diffuse slower inside spiral arms
- \triangleright Assume diffusion coefficient to be smaller inside spiral arms

KORK ERKER ADAM ADA

$$
k_{\text{sv}} = k_{\text{sc}} \left(1 - 0.6 \exp \left[- \left(\frac{d}{0.3 \text{ kpc}} \right)^2 \right] \right),
$$

with *d* the distance from nearest spiral arm.

Spectral variation inside and outside of spiral arms for spatial variable diffusion coefficient

Comparison isotropic/anisotropic case

Local diffusion tensor $(\kappa_{\perp 1,2} = 0.1k, \kappa_{\parallel} = k)$:

Summary

- \blacktriangleright Full 3D time-dependent propagation models have to be used for primary cosmic rays, if they originate in transient, point-like sources i.e. supernovae.
- \triangleright Stochastic Differential Equations (SDEs) provide an robust tool to integrate Fokker-Planck type equations.
- \triangleright We developed an SDE code that
	- \triangleright solves the Cosmic Ray TPE in up to 3 spatial dimensions, momentum and time
	- \triangleright compares well with previous 3D capable codes
	- \triangleright can tackle anisotropic diffusion tensors
	- \triangleright can take advantage of the computational power of modern graphics processi[ng](#page-12-0) units (GPU) using [CUDA.](#page-13-0)
All the series of the serie