

Time dependent cosmic ray modulation in the outer heliosphere: Model results along Voyager 1 and 2 trajectories

R. Manuel , S. E. S. Ferreira and M. S. Potgieter

Centre for Space Research, North-West University, Potchefstroom 2520, South Africa

September 15, 2011

$$\frac{\partial f}{\partial t} = -\mathbf{V} \cdot \nabla f + \nabla \cdot (\mathbf{K} \cdot \nabla f) + \frac{1}{3} (\nabla \cdot \mathbf{V}) \frac{\partial f}{\partial \ln P} + J_{source}$$

Model is based on time-dependent 2D solution of Parker Transport Equation given by,

$$\frac{\partial f}{\partial t} = -\mathbf{V}\cdot\nabla f + \nabla\cdot(\mathbf{K}\cdot\nabla f) + \frac{1}{3}(\nabla\cdot\mathbf{V})\frac{\partial f}{\partial \ln P} + J_{source}$$

• first term on the left side is the cosmic ray distribution function $f(r,\theta,P,t)$

$$\frac{\partial f}{\partial t} = -\mathbf{V} \cdot \nabla f + \nabla \cdot (\mathbf{K} \cdot \nabla f) + \frac{1}{3} (\nabla \cdot \mathbf{V}) \frac{\partial f}{\partial \ln P} + J_{source}$$

- first term on the left side is the cosmic ray distribution function $f(r,\theta,P,t)$
- first term on the right hand side is the outward particle convection due to the radially outward solar wind.

$$\frac{\partial f}{\partial t} = -\mathbf{V}\cdot\nabla f + \nabla\cdot(\mathbf{K}\cdot\nabla f) + \frac{1}{3}(\nabla\cdot\mathbf{V})\frac{\partial f}{\partial \ln P} + J_{source}$$

- first term on the left side is the cosmic ray distribution function $f(r,\theta,P,t)$
- first term on the right hand side is the outward particle convection due to the radially outward solar wind.
- second term is the spatial diffusion parallel and perpendicular to the average HMF and particle drifts.

$$\frac{\partial f}{\partial t} = -\mathbf{V}\cdot\nabla f + \nabla\cdot(\mathbf{K}\cdot\nabla f) + \frac{1}{3}(\nabla\cdot\mathbf{V})\frac{\partial f}{\partial \ln P} + J_{source}$$

- first term on the left side is the cosmic ray distribution function $f(r,\theta,P,t)$
- first term on the right hand side is the outward particle convection due to the radially outward solar wind.
- second term is the spatial diffusion parallel and perpendicular to the average HMF and particle drifts.
- third term is the energy changes.

$$\frac{\partial f}{\partial t} = -\mathbf{V}\cdot\nabla f + \nabla\cdot(\mathbf{K}\cdot\nabla f) + \frac{1}{3}(\nabla\cdot\mathbf{V})\frac{\partial f}{\partial \ln P} + J_{source}$$

- first term on the left side is the cosmic ray distribution function $f(r,\theta,P,t)$
- first term on the right hand side is the outward particle convection due to the radially outward solar wind.
- second term is the spatial diffusion parallel and perpendicular to the average HMF and particle drifts.
- third term is the energy changes.
- and the last term is the possible sources of cosmic rays inside the heliosphere, which is zero for this study.

THE ELEMENTS OF DIFFUSION TENSOR

The diffusion tensor ${\bf K}$ as introduced in Parker's Transport equation is given by,

$$\mathbf{K} = \begin{bmatrix} K_{||} & 0 & 0 \\ 0 & K_{\perp\theta} & K_A \\ 0 & -K_A & K_{\perp r} \end{bmatrix}$$

The diffusion tensor ${\bf K}$ as introduced in Parker's Transport equation is given by,

$$\mathbf{K} = \left[\begin{array}{ccc} K_{||} & 0 & 0 \\ 0 & K_{\perp\theta} & K_A \\ 0 & -K_A & K_{\perp r} \end{array} \right]$$

• Where, $K_{||}$ is the diffusion coefficient parallel to the mean HMF,

The diffusion tensor ${\bf K}$ as introduced in Parker's Transport equation is given by,

$$\mathbf{K} = \left[\begin{array}{ccc} K_{||} & 0 & 0 \\ 0 & K_{\perp\theta} & K_A \\ 0 & -K_A & K_{\perp r} \end{array} \right]$$

- Where, $K_{||}$ is the diffusion coefficient parallel to the mean HMF,
- $K_{\perp\theta}$ and $K_{\perp r}$ denote the diffusion coefficients perpendicular to the mean HMF in the polar and radial direction respectively, and

The diffusion tensor ${\bf K}$ as introduced in Parker's Transport equation is given by,

$$\mathbf{K} = \left[\begin{array}{ccc} K_{||} & 0 & 0 \\ 0 & K_{\perp\theta} & K_A \\ 0 & -K_A & K_{\perp r} \end{array} \right]$$

- Where, $K_{||}$ is the diffusion coefficient parallel to the mean HMF,
- $K_{\perp\theta}$ and $K_{\perp r}$ denote the diffusion coefficients perpendicular to the mean HMF in the polar and radial direction respectively, and
- the anti-symmetric element K_A describes particle drifts which include gradient, curvature and heliospheric current sheet drift in the large scale HMF

• Introduced by Ferreira (2002) and Ferreira and Potgieter (2004) a model to describe long-term time dependent cosmic ray modulation.

- Introduced by Ferreira (2002) and Ferreira and Potgieter (2004) a model to describe long-term time dependent cosmic ray modulation.
- This model incorporates drifts and time dependent changes in the diffusion coefficients resulting effectively in propagating diffusion barriers to model cosmic ray intensities over 11 and 22 year cycles.

- Introduced by Ferreira (2002) and Ferreira and Potgieter (2004) a model to describe long-term time dependent cosmic ray modulation.
- This model incorporates drifts and time dependent changes in the diffusion coefficients resulting effectively in propagating diffusion barriers to model cosmic ray intensities over 11 and 22 year cycles.
- Results from this model are compared with Ulysses and Voyager observations.

- Introduced by Ferreira (2002) and Ferreira and Potgieter (2004) a model to describe long-term time dependent cosmic ray modulation.
- This model incorporates drifts and time dependent changes in the diffusion coefficients resulting effectively in propagating diffusion barriers to model cosmic ray intensities over 11 and 22 year cycles.
- Results from this model are compared with Ulysses and Voyager observations.
- The diffusion and drift coefficients are scaled time-dependently via a function f(t), where

- Introduced by Ferreira (2002) and Ferreira and Potgieter (2004) a model to describe long-term time dependent cosmic ray modulation.
- This model incorporates drifts and time dependent changes in the diffusion coefficients resulting effectively in propagating diffusion barriers to model cosmic ray intensities over 11 and 22 year cycles.
- Results from this model are compared with Ulysses and Voyager observations.
- The diffusion and drift coefficients are scaled time-dependently via a function f(t), where

$$f(t) = \left(\frac{B_0}{B(t)}\right)^{\left(\frac{\alpha(t)}{\alpha_0}\right)}$$

This function is now dependent on the measured HMF magnitude and tilt angle.

From Teufel and Schlickeiser, 2003 follows:

$$\lambda_{||} = \frac{3s}{\sqrt{\pi}(s-1)} \frac{R^2}{b \ k_{min}} \left(\frac{B}{\delta B_{slab,x}}\right)^2 K$$

From Teufel and Schlickeiser, 2003 follows:

$$\lambda_{||} = \frac{3s}{\sqrt{\pi}(s-1)} \frac{R^2}{b \ k_{min}} \left(\frac{B}{\delta B_{slab,x}}\right)^2 K$$

where,
$$\delta B_{slab,x}^2 = 0.5 \delta B_{slab}^2 = 0.1 \delta B^2$$
,

$$R = k_{min}R_L$$
 , $R_L = \frac{P}{Bc}$ and $s = 5/3$

From Teufel and Schlickeiser, 2003 follows:

$$\lambda_{||} = \frac{3s}{\sqrt{\pi}(s-1)} \frac{R^2}{b \ k_{min}} \left(\frac{B}{\delta B_{slab,x}}\right)^2 K$$

where,
$$\delta B_{slab,x}^2 = 0.5 \delta B_{slab}^2 = 0.1 \delta B^2$$
,

$$R = k_{min}R_L$$
 , $R_L = \frac{P}{Bc}$ and $s = 5/3$

At high rigidities we approximate K to be a constant resulting in a time dependence for $\lambda_{||}$ as,

$$\lambda_{||} \alpha \left(\frac{1}{\delta B}\right)^2$$

From Teufel and Schlickeiser, 2003 follows:

$$\lambda_{||} = \frac{3s}{\sqrt{\pi}(s-1)} \frac{R^2}{b \ k_{min}} \left(\frac{B}{\delta B_{slab,x}}\right)^2 K$$

where,
$$\delta B_{slab,x}^2 = 0.5 \delta B_{slab}^2 = 0.1 \delta B^2$$
,

$$R = k_{min}R_L$$
, $R_L = \frac{P}{Bc}$ and $s = 5/3$

At high rigidities we approximate K to be a constant resulting in a time dependence for $\lambda_{||}$ as,

$$\lambda_{||} \alpha \left(\frac{1}{\delta B}\right)^2$$

$$\therefore f_2(t) = C_4 \left(\frac{1}{\delta B}\right)^2$$
, where C_4 a constant in units of $(nT)^2$

RECENT THEORY: Perpendicular Mean Free Path

From Shalchi et al., 2004 follows:

$$\lambda_{\perp} \approx \left[\frac{2v-1}{4v}F_2(v) \ l_{slab} \ a^2 \ \frac{\delta B^2 \ 2\sqrt{3}}{B^2 \ 25}\right]^{\frac{2}{3}} \ \lambda_{||}^{\frac{1}{3}}$$

RECENT THEORY: Perpendicular Mean Free Path

From Shalchi et al., 2004 follows:

$$\lambda_{\perp} \approx \left[\frac{2v-1}{4v}F_2(v) \ l_{slab} \ a^2 \ \frac{\delta B^2 \ 2\sqrt{3}}{B^2 \ 25}\right]^{\frac{2}{3}} \ \lambda_{||}^{\frac{1}{3}}$$

At high rigidities we approximate the time dependence for λ_{\perp} as,

$$\lambda_{\perp} \ \alpha \ \left(\frac{\delta B}{B}\right)^{\frac{4}{3}} \left(\frac{1}{\delta B}\right)^{\frac{2}{3}}$$

RECENT THEORY: Perpendicular Mean Free Path

From Shalchi et al., 2004 follows:

$$\lambda_{\perp} \approx \left[\frac{2v-1}{4v}F_2(v) \ l_{slab} \ a^2 \ \frac{\delta B^2 \ 2\sqrt{3}}{B^2 \ 25}\right]^{\frac{2}{3}} \ \lambda_{||}^{\frac{1}{3}}$$

At high rigidities we approximate the time dependence for λ_{\perp} as,

$$\lambda_{\perp} \alpha \left(\frac{\delta B}{B}\right)^{\frac{4}{3}} \left(\frac{1}{\delta B}\right)^{\frac{2}{3}}$$
$$\therefore f_3(t) = C_5 \left(\frac{\delta B}{B}\right)^{\frac{4}{3}} \left(\frac{1}{\delta B}\right)^{\frac{2}{3}}, \text{where } C_5 \text{ a constant in units of } (nT)^{\frac{2}{3}}$$

Minnie et al., 2007

Minnie et al. (2007), showed that K_A depends on δB , which can change over a solar cycle.

Minnie et al., 2007

Minnie et al. (2007), showed that K_A depends on δB , which can change over a solar cycle.

Which shows that drifts needs to be scaled down to even zero at solar maximum periods.

Minnie et al., 2007

Minnie et al. (2007), showed that K_A depends on δB , which can change over a solar cycle.

Which shows that drifts needs to be scaled down to even zero at solar maximum periods.

We use a similar dependence, in compound approach but instead of K_A depending on δB it depends on α the tilt angle.

 $f_1(t) = (75.0 - \alpha(t)) \, 0.013$

Ndiitwani et al., 2005

Minnie et al., 2007

Ndiitwani et al., 2005

Observing signatures of Heliospheric asymmetry?

Opher, 2008

Heliospheric boundary at 124 AU

Optimal Model Result

1987, Solar min (A < 0)

Predicting 133-242 MeV intensities up to heliopause along Voyager 1 and 2 trajectory

Tilt Angle

Tilt Angle

HMF and Variance

Tilt Angle

HMF and Variance

Voyager Trajectory

Along Voyager 1 trajectory

Along Voyager 2 trajectory

• This is an investigation into time-dependent cosmic ray modulation in the outer heliosphere.

- This is an investigation into time-dependent cosmic ray modulation in the outer heliosphere.
- This talk highlighted our findings regarding the sensitivity of intensities to variations in the boundary position and possible asymmetry of the heliosphere.

- This is an investigation into time-dependent cosmic ray modulation in the outer heliosphere.
- This talk highlighted our findings regarding the sensitivity of intensities to variations in the boundary position and possible asymmetry of the heliosphere.
- Next phase is to predict a possible range for the local interstellar spectra.

- This is an investigation into time-dependent cosmic ray modulation in the outer heliosphere.
- This talk highlighted our findings regarding the sensitivity of intensities to variations in the boundary position and possible asymmetry of the heliosphere.
- Next phase is to predict a possible range for the local interstellar spectra.
- We predict a steady increase in Voyager 1 cosmic ray intensity observations up to heliopause. But for Voyager 2 there is still a large modulation volume left, leading to solar cycle related changes in intensities up to heliopause.

- This is an investigation into time-dependent cosmic ray modulation in the outer heliosphere.
- This talk highlighted our findings regarding the sensitivity of intensities to variations in the boundary position and possible asymmetry of the heliosphere.
- Next phase is to predict a possible range for the local interstellar spectra.
- We predict a steady increase in Voyager 1 cosmic ray intensity observations up to heliopause. But for Voyager 2 there is still a large modulation volume left, leading to solar cycle related changes in intensities up to heliopause.

Thank You!

