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o first term on the left side is the cosmic ray distribution function
f(r,0,P1)

o first term on the right hand side is the outward particle convection
due to the radially outward solar wind.

e second term is the spatial diffusion parallel and perpendicular to
the average HMF and particle drifts.

@ third term is the energy changes.

e and the last term is the possible sources of cosmic rays inside the
heliosphere, which is zero for this study.
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THE ELEMENTS OF DIFFUSION TENSOR

The diffusion tensor K as introduced in Parker’s Transport equation
is given by,

K, 0 0
K=| 0 K, Ka
0 _KA KJ_T

e Where, K| is the diffusion coefficient parallel to the mean HMF,

e K9 and K, denote the diffusion coefficients perpendicular to the
mean HMF in the polar and radial direction respectively, and

o the anti-symmetric element K 4 describes particle drifts which in-
clude gradient, curvature and heliospheric current sheet drift in
the large scale HMF
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e Introduced by Ferreira (2002) and Ferreira and Potgieter (2004) a
model to describe long-term time dependent cosmic ray modula-
tion.

@ This model incorporates drifts and time dependent changes in the
diffusion coefficients resulting effectively in propagating diffusion
barriers to model cosmic ray intensities over 11 and 22 year cycles.

@ Results from this model are compared with Ulysses and Voyager
observations.

@ The diffusion and drift coefficients are scaled time-dependently via
a function f(t), where

o= (2)

This function is now dependent on the measured HMF magnitude

and tilt angle. Lnu
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From Shalchi et al., 2004 follows:
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Time dependence in drift coefficient
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Minnie et al., 2007

Minnie et al. (2007), showed
that K4 depends on 6B, which
can change over a solar cycle.

Which shows that drifts needs to
be scaled down to even zero at
solar maximum periods.

We use a similar dependence, in
compound approach but instead
of K4 depending on 6B it de-
pends on « the tilt angle.

f1(t) = (75.0 — a(t)) 0.013

Ndiitwani et al., 2005
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Observing signatures of
Heliospheric asymmetry?

Opher, 2008



Heliospheric boundary at 124 AU
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Optimal Model Result
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Predicting 133-242 MeV
intensities up to heliopause
along Voyager 1 and 2
trajectory
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Differential Intensity (mz.s.sr.MeV)'1

A<0 A>0

1.1

T T T T T T T T T
10l o Voyager 1: E >70 MeV protons | - ‘ 777‘731‘_@“ 1
T o Voyager 2: E > 70 MeV protons mi ‘ — 1
F * IMP8: E > 70 MeV protons \ \ \ o
0.9 H v Ulysses : 2.5 GV protons -
[| e— \/Oyager 1 : model result | | | | 1
0.g [| == == == voyager 2 : model resuit S 1
| |#eeeeeeee Earth : model result T T } ;7
\
\

.0
1984 1986 1988 1990 1992 1994 1996 1998 2000

Time (years)

Ry



Along Voyager 1 trajectory
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Along Voyager 2 trajectory
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Conclusion

e This is an investigation into time-dependent cosmic ray modulation
in the outer heliosphere.

o This talk highlighted our findings regarding the sensitivity of in-
tensities to variations in the boundary position and possible asym-
metry of the heliosphere.

o Next phase is to predict a possible range for the local interstellar
spectra.

o We predict a steady increase in Voyager 1 cosmic ray intensity
observations up to heliopause. But for Voyager 2 there is still a
large modulation volume left, leading to solar cycle related changes
in intensities up to heliopause.

Thank You!
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