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Outline

A. Solar Wind Fluctuations
1. Nature.   waves? turbulence? …

2. Anisotropy
3. Models:  ~ critical balance

B. Radial evolution
–. Turbulence models
–. Observational comparison

incompressible
Hc = <v.b> = 0



 

A: Models of SW Flucts

• Observations suggest presence of 
waves and turbulence

i.e.,  v = b   which   “implies”   Alfven waves 
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Turbulence:

Magnetic Energy Spectrum, P(f) 

Power-law inertial range

[Goldstein EA 1995]



 

Aside:  Kolmogorov Theory

statistically steady

nonlinear terms conserve 
E

energy flux local in k-
space, so

Dimensional analysis 
gives inertial range form:
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• Write fields as mean + fluct

• Often 
   b / <B>  ~  ½ 

so <B>  is significant,   but NOT dominant

• Anisotropy



 

Variance Anisotropy

• <B>-aligned coords
• perp power dominates: 

       bx2 : by2 :  bz2   =   5 : 4 :  1

– BelcherDavis71, KleinEA91, HorburyEA95,…

• Interpretations?
A: `slab’ ||-prop. Alfven waves
      ampl ?  <B>
             k ||  <B>
–No conclusion from min variance dirn

B: quasi-2D turb

    ampl, k  ? <B>

 <B>

Vsw



 

Spectral/Correlation Anisotropy



 

Correlation Anisotropy: Maltese 
cross

• MatthaeusEA90:
– b flucts at 1AU
– Construct corrn fn 

      Rbb(rk, r?)   wrt 
<B>

Find 
– No single symmetry.
– Suggests 2 

populations



 

• DassoEA05 update
– At 1AU, slow and fast 

wind give different  Rbb 
corrn fns

slow wind: 2D fast wind: slab

Interp:
 Slow/older 
wind has 
had more 
time to 
evolve 
[to 
quasi-2D]



 

Spectral anisotropy

• Observe magnetic 
energy spectra,  P(f)

• At different angles to 
<B >

• Assume power-law 
inertial ranges

• Fit to model: slab + 2D

• Best fit: 
   80% 2D,  20% 

slab

Bieber et al., J. Geophys. Res., 1996

Slab-only 
model

Fit:   5%  slab    
    95%  2D



  

Weak Turb explanation for anisotropy

• <B> causes suppression 
of || transfer

• leads to  lpar > lperp
– plasma devices ~10x
– SW measurements ~ 3x      

 (WeygandEA09)



  

Anisotropy when B0 ≠ 0         [ShebalinEA83, 
GaltierEA00]

Weak turb approach:

• 0th order:  Alfven waves

• 1st order:  nonlinear corrections

•                                       ,   etc 

require

●          k = p  + q

● and  k|| = p|| - q||

è q|| = 0             (or p|| = 0)

• Gives perp transfer from p �  k

q

k_par

B0
k_

pe
rp

p

k



 

• x-space 
interpretation:
   wide/narrow wave 
packets

• But, more 
complicated than just 
weak turb

• Also 2 other classes 
of interactions

• Related to 

      - reduced MHD    

x-space

k-space



  

non-resonant
wave-wave: ~Kraichnan

resonant: ~ShebalinEA83
  perp transfer

‘trivially’ resonant: 
   ~hydro-like
~ unaware of B0

B0



 

(Not just weak turb)

• 2 coupled components:

–  wave-like weak turb. flucts:       W

– quasi-2D (low-freq) turbulence:  Z

Distinguished by which timescale 

is shorter

at each k:        NL(k)  < A(k)

N
L(

k)
 =

 
A

(k
)

Z
W

k_par

B0

k_
pe

rp

CONCEPTS:

Reduced MHD
  Strauss78, Montgomery82

Critical Balance
  Higdon86
  GoldreichSridhar95



 

Observ. support for ~crit balance ?

•Really want full k spectrum   E(kx, ky, kz)

•1 s/craft only gives              Ered(kradial) = 
P(f)

•But 
•  by collecting data at different V- <B> 
angles 
•  can construct  P( f, )  <B>

Vsw

Z W

k_par
B0

k_
pe

rp





 

• Ulysses B data

• wavelet `freq’ spectra

• P(f, BV)

• slope varies with 

•      -5/3  in ~ perp

•      -2     in  ||  dirn

Horbury et al, PRL, 2008

 <B>

Vsw



 

Slab contrib

2D contrib

Studies at 
different times, 
distances:

• Horbury et al 2008
• Smith SW10 proceed.
• Podesta 2009…
• Wicks et al 2010,11

All suggest spectra 
are
    ~critical balance
style:
    q-2D  +  wave-
like 
       (Z)         (W)

Horbury et al, PRL, 2008

NB:
2. Studies for v not done (yet)
3. For Hc case, see, 
4.       eg, BeresnyakLazarian08



 

B. Transport of SW Flucts



 

1. Observations

• Spacecraft data:  fluctuations  v, b, 
     Voyager, ACE, Ulysses, …

Voyager data

WKB R-4/3

QSN:  How do flucts evolve with distance ?



 

2. Objective

• Model radial evoln of SW flucts

• Treat flucts as 2 coupled components:

      -  wave-like (high-freq) flucts:       W

        -   quasi-2D (low-freq) turbulence:  Z

      incompressible

N
L(

k)
 =

 
A

(k
)

Z
W

k_par

 E(k_par,  
k_perp)

B0

k_
pe

rp



 

3. Processes:  What causes the evolution?

• Z,W:
– expansion, advection
– stream-shear    [shocks, large-scale inhomog]

• W driven by pickup ions  (outer heliosphere)

• Energy exchange between cpts:  Z $ W

• Nonlinear cascades of  W, Z  �   proton 
heating



 

 4.  Why 2 components?

• Earlier transport models assumed  1  type 
of fluctuation

• But, physics is
• shear drives at low-freq               (non-WKB)
• pickup ions drive high-freq flucts (Alfven 

waves)
   So  2  types of flucts    improvement

• Equations for 
– energy, cross helicity, corrn length

   of  Z and W



 

  5. Equations: linear terms  (steady)

2D energy:

wave energy:

2D corrn length:

wave corrn 

pickup ion
driving

relax to res

Ex
pa

ns
io

n

sh
ea

r



 

6. Sample Solutions



 

Sample solutions …

Cshear = 1       

=  2= 0.25 

D = -1/3

WKB

Fixed BCs



 

Sample solutions …

Cshear = 1

=  2= 0.25 

D = -1/3

+  WeygandEA09 Cluster data



 

Model  with  Voyager data 

• ‘mapped’ solutions:   different BCs for each Voyager  
interval
• 
•Voyager data:            Chuck Smith, John Richardson



 

distance, AU



 

Observ/Model agreement is encouraging



 

SUMMARY        

   SW fluctuations
      can model as 2 types:  wave-like  +  quasi-2D turb

• Allows driving physics to be included more 
consistently.

• ~agreement with observations

• Corrn lengths:  
       perp:   2-cpt model ~better fit 
                     than 1-cpt. N
L(

k)
 =

 
A

(k
)

Z W

k_par

B0

k_
pe

rp
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Shortcomings

• Main weakness
– single lengthscale for each cpt

          eg,     = + = - 
– Should really have § lengthscales for Z, W.

• Is driving of pickup ion lengthscale 
OK ?

• No compressible flucts



 

Nonlinear terms: Modeling

• Use 2-cpt phenom    [OughtonEA06, PhysPlas] .

• Strong Va limit

• Leading-order terms are ? cascades 

(resonant interaction with quasi-2D cpt)

• Look at zero cross helicity version first



 

 Nonlinear terms: 
Modeling

• ~von Karman-Howarth phenomenology

  2D:

  waves:

• Cascades    proton heating

• Also eqns for lengths:

? cascades

~Kraichnan

Oughton et al 06, Phys. Plasma



 

• Hc   0

• Same structure as Hc = 0 case
•                 (but uglier)

•Roughly,
•    non-linear terms weakened as  c  § 
1. 

eg,

,      | f| < 
1



 

Cross helicity 
transport

proton

temperature



 

Temperature                 Cross 
Helicity

Z

W

Data: Helios, Voyager

adiabatic



 

6. Steady-state equations



 

rest of eqns:

tubulent heating

proton
temperature



 

8. Parameters

• Model has various parameters, controlling
– strength of stream-shear 

             [forces energies & lengthscales]
– pickup ion driving 
             [reasonably constrained/understood. 

IsenbergEA03, 05]
– local conserv laws for Z or W nonlinear 

dynamics

• Solns are typically stable to small changes 
in these params.

• Similarly for small changes in 
      boundary conditions  for Z2, W2, etc.
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Turbulence          vs              
Waves

• No spectral transfer 
(linear case)

• Propagation

• Dispersion relation  
(k)
– each length-scale couples 

to 
     a specific time-scale

       
• Inherently nonlinear

     => spectral transfer

• Advection  [self-
distortion]

• No dispersion 
relation
– each length-scale coupled 

to 
     many time-scales (and v.v.)

k

(k

Log k

L
o
g

 E
(k

)

ASIDE:



 

Sample solutions …

Csh= 1,       = 2= 
0.25, 

D = -1/3
+  WeygandEA09 Cluster data



  

Why 2-component models ?

• Theory:                          RMHD, critical 

balance 

• Simulations:                   GhoshEA98…

• Observational support:  BieberEA94,96,

…

Bieber et al., J. Geophys. Res., 1996

Slab-only 
model

Fit:   5%  slab    
    95%  2D

Magnetic power spectra
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