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Solar Wind Fluctuations

1.

Nature. waves? turbulence? ...

2. Anisotropy

3.

Models: ~ critical balance

Radial evolution

Turbulence models
Observational comparison

incompressible
Hc = <v.b> =0




Observations suggest presence of
waves and turbulence

Alfven Waves
[Belcher & Davis 1971]

l.e.,

TIME (HRé)

v=Db which “implies” Alfven waves



Turbulence:

Magnetic Energy Spectrum, P(f)

Power-law inertial range
Mariner 10 1974:79:12 (0.12 sec)
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[Goldstein EA %5]



Aside: Kolmogorov Theory

statistically steady

nonlinear terms conserve
E

energy flux local in k-
spare <n

e o< kO°E(k)?

Dimensional analysis
gives inertial range form:

e inertial
~.range | ¢

Log E(k)

l \diisip

Log k

BE(k) = Cye?/3k5/3



- Write fields as mean + fluct

B=(B)+b

- Often

b/ <B> ~ %
so <B> is significant, but NOT dominant

- Anisotropy



Variance Anisotropy

<B>-alighed coords Vsw
perp power dominates: 0 g
bx2 :by2: bz2 = 5:4: 1

- BelcherDavis71, KleinEA91, HorburyEA95,...

Interpretations?
A: “slab’ ||-prop. Alfven waved$: quasi-2D turk '

ampl ? <B>
k|| <B>
-No conclusion from min variance dirn

ampl, k ? <E



Spectral/Correlation Anisotropy



Correlation Anisotropy: Maltese
Cross

- MatthaeusEA9O:
b flucts at 1AU
Construct corrn fn
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DassoEAQO5 update
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Spectral anisotropy

Observe magnetic
energy spectra, P(f)

At different angles to
<B >

Assume power-law
Inertial ranges

Fit to model: slab + 2D

Best fit:

80% 2D, 20%
slab

Slab-only
model

Fit: 5% slab
95% 2D
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Bieber et al., J. Geophys. Res., 1996




Weak Turb explanation for anisotropy

<B> causes suppression
of || transfer

leads to Ipar > Iperp
- plasma devices ~10x

- SW measurements ~ 3x
(WeygandEAOQ09)



-~ Anisotropy when BO = 0 [ShebalinEA83,

™~ _ 1L _ __.ranni

Weak turb approach:

- Oth order: Alfven waves v, b~ ez(k-wiwt)

- 1st order: nonlinear corrections

- , etc
VE ~ Vg - VUp

require E(k”, ki)
y k=p +q

- and k|| =pl|-ql|

kK _perp
AN

¢ q|| =0 (or pl| = 0)

BO

- Glves perp transfer fromp k

K _par



X-space 0 b 4 o

. . i

interpretation: |
wide/narrow wave

packets /\Ab ﬂﬂ(\, ﬁb

But, more kl !
complicated than just |
weak turb k-space

armpeelitoa de
armpelitauadeses
armaeel i toa de

Also 2 other classes
of interactions

Related to



amplitude

(a)

non-resonant
wave-wave: ~Kraichnan

(&)

resonant: ~ShebalinEA83
perp transfer

‘trivially’ resonant
~hydro-like
~ unaware of BO



(Not just weak turb) CONCEPTS:

Reduced MHD
Strauss78, Montgomery82

Critical Bal
2 coupled components: Qié%aonsaGance

GoldreichSridhar95

— wave-like weak turb. flucts: w

- quasi-2D (low-freq) turbulence: Z

E(k), k1)
=
- : : : o NS
Distinguished by which timescale o e
. Jz 2
Is shorter ~ W
g
at each k: TNL(k) < tA(k)
BO

K _par



Observ. support for ~crit balance ?

o
fam
)

‘Really want full k spectrum E(kx, ky, kz) g
I

~ W
-1 s/craft only gives Ered(kradial) = : .-
P(f) ,/"674

_- BO
K _par

-‘But
- by collecting data at different V- <B>
angles Vsw
- canh construct P( f, 0) 0



- Ulysses B data

- wavelet freq’ spectra

- P(f, 6BV)

- slope varies with 6:
-5/3 In ~ perp

-2 in || dirn

Horbury et al, PRL, 2008



Studies at
different times,
distances:

- Horbury et al 2008

- Smith SW10 proceed.

- Podesta 2009...
-Wicks et al 2010,11

All suggest spectra
are
~critical balance
style:
g-2D + wave-
like
(Z) (W)

2D contrib

Slab contrib

Horbury et al, PRL, 2008

NB:
.. Studies for v not done (yet)

3.

4.

For Hc case, see,
eg, BeresnyaklLazarian08







1. Observations

Spacecraft data: fluctuations v, b, p
Voyager, ACE, Ulysses, ...
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Voyager data

QSN: How do flucts evolve with distance ?



2. Objective

Model radial evoln of SW flucts

Treat flucts as 2 coupled components:

- wave-like (high-freq) flucts: W

- quasi-2D (low-freq) turbulence: Z E(k_par,
cperD)
=

% //b
=
JZ S
g w

Incompressible
BO

K _par



3. Processes: What causes the evolution?

- Z,W: ﬁ':%
- expansion, advection
- stream-shear [shocks, large-scale inhomog]

- W driven by pickup ions (outer heliosphere)
Energy exchange between cpts: Z$ W

Nonlinear cascades of W, Z proton
heating




4. Why 2 components?

Earlier transport models assumed 1 type
of fluctuation

But, physics is

- shear drives at low-freq (non-WKB)
- pickup ions drive high-freq flucts (Alfven
waves)

So 2 types of flucts = improvement

Equations for
- energy, cross helicity, corrn length

of Zand W




5. Equations: linear terms (steady)

2D energy:

wave energy:

2D corrn length:

wave Ccorrn

dz?

dr
dW 2

dr

<
K
>N
2
714
r
5 :
CW} W< = Epy
sh ' )
r U
pickup ion
driving
_ozt
_ew
—o2 (= her) 2

relax to Ares



6. Sample Solutions



Sample solutions ...

2 W [lkms)]
1000/, |
Fixed BCs | " U
Cshear =1 '1 ' m
a = 2B=0.25

oD = -1/3

Lengthscales AU




Sample solutions ...

7 W (kms)] Lengthscales [AU]
10000 r x "\, UE ﬁ

f[AU] f[AU]

Cshear =1 + WeygandEAQ9 Cluster dat:
a = 2=0.25
oD = -1/3



Model with Voyager data

- ‘mapped’ solutions: different BCs for each Voyager
interval

‘Voyager data: Chuck Smith, John Richardson



distance, AU




Observ/Model agreement is encouraging



SUMMARY

SW fluctuations
can model as 2 types: wave-like + quasi-2D turb

Allows driving physics to be included more
consistently.

~agreement with observations

= =
8, F
Corrn lengths: ~ Z Sy

perp: 2-cpt model ~better fit
than 1-~nt

BO
K _par

L (k)



Thank you

Click to edit Master subtitle style

Bochum Sen 2011



Shortcomings

Main weakness

- single lengthscale for each cpt
eg, A=A+ =A-
- Should really have § lengthscales for Z, W.

Is driving of pickup ion lengthscale
OK?
No compressible flucts



Nonlinear terms: Modeling

Use 2-cpt phenom [OughtonEAO6, PhysPlas] .
Strong Va limit
Leading-order terms are ? cascades

(resonant interaction with quasi-2D cpt)

Look at zero cross helicity version first



Nonlinear terms:

? cascades

~von Karman-Howarth phenomenology

2D: dZ?2 73 WZz2 2

D _ + X
waves: i £ ¢ 1+2Z/w

dw?  Zw? 2 QWA

_dt XN 1400 A2 B
CaSCCIVI\—U IVI VHVI_II_II/\-—UIHIIIv Va

Also eqns for lengths: ~Kraichnan

l, A, )\”

Oughton et al 06, Phys. Plasma



Hc# O

-Same structure as Hc = 0 case
(but uglier)

‘Roughly,
non-linear terms weakened as occ =§

73 73
eg; 047 — Ofo(O'C)

/1 — 2
floe) = : C[w1+ac+m], | f| <

2




Cross helicity

proton
temperature

doc
dr

doe
dr

dTl
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Temperature Cross
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Data: Helios, Voyager



dz2

dr
dW?
dr

d/¢

dr
d\

dr

dr

6. Steady-state equations

1+ Mop OZ}ZTQ - af((fC)Z; + iy

1+ Mop - CW}WT - ?szlfw - f)% + %
Mop — } —I—ﬁZ[Z f UZEQI
Map - CH| 2 + pw 2+ 10
Mep—C % = (A” —>\Tes> iV][D/IQ + I Nonlinear




doc , Z Cth — Mop

dr azf U/l r oes

d&. o 42 CH —M&p | Epy

= aw/f — i 5| %c

dr UX1 4 )\/¢ r UW

dT 4T m 73 ZW2 2

T _ AT o [ B |
roton A7 3r  3Ukpg A 14+ N/¢

temperature ‘ ‘

tubulent heating



Model has various parameters, controlling
- strength of stream-shear

- pickup ion driving

- local conserv laws for Z or W nonlinear
dynamics

Solns are typically stable to small changes
In these params.

Similarly for small changes in



ASIDE:

Turbulence VS

* Inherently nonlinear No spectral transfer
=> spectral transfer (linear case)

e Advection [self-
distortion]

Propagation

 No dispersion Dispersion relation

relation (k)

— each length-scale coupled - tegch length-scale couples
to

many time-scales (and v.v.) a specific time-scale

\ o (k)

Log k 4343,

Log E(k)



Sample solutions ...

25, W' [(km/s)?] Lengthscales [AU]

+ WeygandEAOQO9 Cluster data



Why 2-component models ?

- Theory:

balance

- Simulations:

- Observational support:

Magnetic power spectra

RMHD, critical

GhoshEA9S...

Slab-only "'l Fit: 5% slab
model 95% 2D
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Bieber et al., J. Geophys. Res., 1996
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