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Motivation (Observations: coronal magnetic field structure)

J.D. Richardson, J.C. Kasper [ Journal of Atmospheric and Solar-Terrestrial Physics 70 (2008) 219-225
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Fig. 1. A schematic diagram showing the change in the solar magnetic field configuration from dipolar with a small current sheet tilt at
solar minimum to disordered at solar maximum. Adapted from http:/ /www.sp.ph.ic.ac.uk/~forsyth /reversal.

At the solar minimum the magnetic field has relatively regular structure, while
at the maximum it becomes fragmented leading to constraints on the available
spatial scales of the wave excitation sources.



Motivation (Observations: solar wind velocity cyclic variability)
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Fig. 4. Solar wind speeds and normalized densities time-shifted to 1 AU.

Along with the increasing rate of the magnetic field structure fragmentation the
latitudinal area generating the slow solar wind outflow expands significantly ,
while the polar coronal holes become retreated close to the polar regions. As a
result, the velocity gradiends become less pronounced over the wide range of
the heliographic latitudes.



Motivation (Observations: solar wind helium abundance)
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Fic. 7.—Histograms of the distribution of Ay, for solar wind with speeds
between 300 and 325 km s during solar minimum (mid-1996; dot-dashed
line), increasing solar activity (1999; gray shading), and solar maximum (2001;
solid line). Instead of a simple increase in the observed value of Ay, with solar
activity, the distribution appears bimodal Even at solar maximum a small
population at the solar minimum value of Ay, is seen.

There are two sources of the slow solar wind operating at different
stages of solar cycle (Kasper et al., Apj, 2007, 660, 901).



Motivation (Observations: Latitudinal probbility of active
region sources)

Liewer, P. C., Neugebauer, M., and Zurbuchen, T.,

(2004), Solar Phys..

ON THE LATITUDINAL DISTRIBUTION OF SUNSPOT GROUPS OVER A SOLAR CYCLE
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Figure 1. Percentages of sunspot groups to occur at the 8 latitude bands for cycles 12 to 22 and their

averages (last panel).

Li, K.J., Wang, J.X., Zhan, L.S., Yun, H.S., Liang, H.F., Zhao, H.J., and Gu, X.M.,
Sol. Phys.,

215, 99
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The model (basic concepts)

* 1D model of the Alfvén wave turbulent heating and acceleration of the solar wind,
developed by Vainio, Laitinen, and Fichtner, 2003, A&A, 407, 713, is used as a
reference model.

 We update the model by adding the latitudinal variation of the lower frequency
boundary of the wave spectrum f, , which we claim to be finite due to the
fragmentation of the available space for the wave excitation sources.

 We mimic the distribution of the frequency lower boundary of the wave spectrum
by imposing upper boundary on the available wavelength in accordance with the
typical widths of streamer-like field structures emerged during the cycle.
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Fig. 1. Panel A: Modelled latitudinal distribution of the lower boundary of the frequency
spectrum. The curves correspond to four different phases of the solar cycle: 7 =0,1.5,3.5
and and 5.5 (years counted from minimum activity) labeled 1 to 4, respectively. Panel B:

curves of the total speed V vs. latitude. The four curves are shown in the same order as in

Panel A.



The model (definitions and equations)

The wave power evolution:
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The wave heating function:

Quw = Qui + Qw2 = T (F(fu) — F(fo)] +

P(fo) Vo —

P(fu)V fu



V4 f&fz pa/z

F = 21>
™Y B

(14)

'I'he physical quantitics in the latter expression arc defined by Vainio et al. (2003) as follows:
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to define the wave power P(f,r). Here,
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represents the part of the spectral power outside the inertial range where waves tollow

predominantly WKDB behaviour where

B
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and f.(r) is the breakpoint frequency at which the Kolmogorov type of the spectrum starts
to prevail: }
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Fig. 2.— Panel A: The wave power spectra ( fF) vs. frequencies. The very thick solid line
15 the complcte spectrum of the refercnce model, which 1n our model corresponds to the
solar minimum. The vertical line marks the cut-off frequency fy. The three curves tc the
right. of the latter are the new spectra (fP), that include the waves from active region
sources compensating for losses related to the truncation of the original spectrum, at the
different latitudes ¥4 (solid line), 9 (dashed line) and o3 (dotted line). Panel B: The relative

difference Py/P — 1 for the considered three latitudes using corresponding linestyles.
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Fig. 5.— The spectral parameter £/, (dashed line) and the coefficient of interrelation between

outgommg and mcoming wave mtensities a;} (solid line) vs. heliographic latitude.
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Fig. 3.— Panel A: Calculated heating rates (Qy (reference model, very thick solid line), @
(modified heating using truncated spectrum for the three different latitudes mentioned in
Fig. 3, thin lines) and @ (heating including waves from active regions, dashed line).Panel B:
Plots of ratios Q1 /Qq (thick lines) and Q/Q (thin lines) corresponding to the curves shown
in Panel A. The linestyles for () (thin lines) and () (thick lines) correspond to the latitudes

given in Figure 2.
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Fig. 4.— Panel A: Calculated wave pressure gradients —(m,n.) ™! (Opwo/0r) (very thick
solid line), —(mpne)~! (Opy/Or) (thin line) and currently —(mpne)~! (Opwi/dr) (thick
lines).Panel B: Plots of the differences —(myn.)™! (Opw1/Or — Opwo/Or) (thick lines) and
—(myn.) " (Op,/Or — Opyo/Or) (thin solid line) corresponding to the curves shown in Panel

A. The linestyles correspond for p,, (thin solid line) and p,,; (thick lines) to the latitudes as
mn figures 2 and 3.



Conclusions

* In the current work we focused on the basic physical grounds underlying the
concept we are addressing. While more extended numerical studies via performing
direct numerical simulations will be published elsewhere, here we demonstrate, in
general terms, a correspondence of the above-stated modeling with the existing
data and modern understanding of the solar wind acceleration scenarios. The
lower boundary of the wave frequency domain should be taken into account as a
natural parameter!

* most of the indirect measurements of the active region evolution during the solar
cycle, like detections of the helium abundance in the solar wind, indicate that
multiple processes for slow wind heating and acceleration should operate in the
relative proportions at different phases of the solar cycle (Kasper et al. 2007). With
the uptrend of the activity cycle the significance of the streamer belt contribution
decreases gradually reaching some smaller but finite rates at maximum.

» Contributions from the increasing number of active regions lead another
important process to be switched on. At a certain stage this latter process starts to
prevail and at solar maximum it mainly contributes to the slow wind dynamics. The
resulting magnetic structures as sources of the waves are known as active region
sources (Liewer et al. 2004). As a matter of fact, the distribution we have proposed
IS nothing else than that of active region sources.
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