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Cosmic Ray Transport

We solve Parker (1965) transport equation in the form
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= −
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)
p

∂ f
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Make use of stochastic differential equations (SDEs), we solve this
equation (backwards in time) in 5D.
Assuming ρ ∝ f we use the time backwards Kolmogorov equation

∂ f
∂ t

= ∑
i

(
Ai

∂ f
∂xi

)
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ij
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)
to derive the appropriate set of SDEs, which is then solved numerically.
SDE models discussed by e.g. Strauss et al. (2011) ApJ, Zhang (1999),
Alanko-Huotari et al. (2007), . . . and lots more . . .
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Stochastic integration . . .

This transforms the TPE into a set of N −1(= 4) 2D differential
equations

d~x =~Adt +B ·d~W

with e.g. xi ∈ {r,θ ,φ ,E} and d~W =~η
√

dt.
These are solved (simultaneously) numerically be an Euler scheme
(∆t ∼ dt)

~xt =~xt−1 +∆~xt−1

with some starting point~x0.
This pseudo-particle is traced up to a modulation boundary (when using
backwards in time; stationary solution). Averaging a lot of them, we can
calculate e.g. j at~x0.
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Calculation of propagation times and energy losses
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Propagation times and energy losses – 1D solutions
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Electron modulation model setup . . .

Solve for galactic and Jovian electrons simultaneously.

We add the Jovian magnetosphere as a solid angle is space.

Jupiter also moves time dependently along its trajectory.

Numerically, Jupiter is added as a second modulation boundary.

We can then calculate the total electron flux as

f (~r0,p0, t0) =
∫
~r∈Ωb

fb(~rb)ρ(~rb,p|~r0,p0)dp+
∫
~r∈Ω′

b

f ′b(~r
′
b)ρ(~r′b,p|~r

0,p0)dp.

with Ωb
⋂

Ω′
b = 0, leading to jt = jg + jj.
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Galactic electrons
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Drift visualization
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Drift visualization
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Jovian electrons
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Jovian electrons
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Wavy current sheet
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The shortest
distance to the HCS
has to be obtained,
i.e. minimize a line
element in 2D.

This has to be done
numerically . . .
Nelder-Mead
method.

L2 = (r− r′)2 + r2(θ −θ
′)2 + r2 sin2

θ(φ −φ
′)2

but with θ ′ = θ ′(r′,φ ′).

Strauss et al. CR modulation 14/ 17



Introduction Results

Drift results
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The HCS stickyness
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The HCS stickyness
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