Compressive wave structures on kinetic scales resulting from a two-dimensional turbulent cascade in the solar wind

Daniel Verscharen $^{1,2},\ {\rm Eckart}\ {\rm Marsch}^1,\ {\rm Uwe}\ {\rm Motschmann}^2,\ {\rm and}\ {\rm Joachim}\ {\rm Müller}^2$

1: Max Planck Institute for Solar System Research, Katlenburg-Lindau 2: Institute for Theoretical Physics, Technical University Braunschweig Germany

Spectral ranges

lons are treated as particles following the characteristics of the collisionless Vlasov equation:

$$\frac{\mathrm{d}\boldsymbol{v}_j}{\mathrm{d}t} = \frac{q_j}{m_j} \left(\boldsymbol{E} + \frac{1}{c} \boldsymbol{v}_j \times \boldsymbol{B} \right),$$
$$\frac{\mathrm{d}\boldsymbol{x}_j}{\mathrm{d}t} = \boldsymbol{v}_j.$$

Electrons are treated as a massless fluid:

$$m_{\rm e} \frac{\mathrm{d}(n_{\rm e} \boldsymbol{u}_{\rm e})}{\mathrm{d}t} = 0 = -en_{\rm e} \left(\boldsymbol{E} + \frac{1}{c} \boldsymbol{u}_{\rm e} \times \boldsymbol{B} \right) - \operatorname{grad} p_{\rm e},$$

leading to a generalized Ohm's law of the form:

$$\boldsymbol{E} = -\frac{1}{c}\boldsymbol{u}_{e} \times \boldsymbol{B} - \frac{1}{n_{e}e} \operatorname{grad} p_{e}.$$

Isothermal equation of state for the electron pressure:

$$p_{\rm e} = p_{\rm e0} \left(\frac{n_{\rm e}}{n_{\rm e0}}\right)^{\gamma}$$

Magnetic field is described by the induction equation:

$$\frac{\partial \boldsymbol{B}}{\partial t} = \operatorname{curl} \left(\boldsymbol{u}_{\mathrm{i}} \times \boldsymbol{B} \right) - \operatorname{curl} \left(\frac{c}{4\pi \rho_{\mathrm{c}}} \operatorname{curl} \boldsymbol{B} \times \boldsymbol{B} \right)$$

The code is parallelized. Adaptive mesh refinement is possible.

One-dimensional simulation

- $\beta_{\mathrm{p}}=0.08$, $\beta_{\mathrm{e}}=0.5$
- $\bullet\,$ Box size: 2048 grid points over a spatial size of $500\ell_p$
- 400 (pseudo-)particles per cell
- superposition of 60 Alfvén/ion-cyclotron waves following a Kolmogorov spectrum $(k^{-5/3})$ in interval $k=0.06\ldots0.2$
- amplitudes correspond to a wave with amplitude $\delta B/B_0=0.1$

•
$$dt = 0.01$$

One-dimensional simulation $\ensuremath{\mathsf{PSD}}\xspace$ B-field

D. Verscharen et al. Compressive wave structures

One-dimensional simulation Dispersion, PSD B-field

Two-dimensional simulation

- $\beta_{\rm p}=0.05$, $\beta_{\rm e}=0.5$
- Box size: 1024×1024 over a spatial size of $250\ell_{\rm p} \times 250\ell_{\rm p}$
- 1000 (pseudo-)particles per cell
- superposition of 20 incompressible MHD Alfvén waves following a Kolmogorov spectrum $(k^{-5/3})$ in interval $k = 0.05 \dots 0.2$ for each direction
- 360° covered by 60 steps
- amplitudes correspond to a wave with amplitude $\delta B/B_0=0.01$
- dt = 0.01

Two-dimensional simulation $\ensuremath{\mathsf{PSD}}\xspace$ B-field

Two-dimensional simulation PSD density

Two-dimensional simulation Dispersion, PSD B-field parallel

Two-dimensional simulation Dispersion, PSD B-field perpendicular

Two-dimensional simulation Dispersion, PSD density perpendicular

Two-dimensional simulation Correlation: Pressure-balanced structures?

Conclusions

- Wave-wave interactions excite linear normal modes at higher wavenumbers.
- Parallel: L-mode until cyclotron resonance, R-mode continues.
- Density fluctuations are essentially perpendicular.
- Ion-Bernstein waves and pressure-balanced structures (PBSs) might explain the perpendicular fluctuations.
- The spectral break occurs rather at the inertial length scale than at the gyroradius.

Literature

O. Alexandrova, J. Saur, C. Lacombe, A. Mangeney, J. Mitchell, S. J. Schwartz, and P. Robert. Universality of Solar-Wind Turbulent Spectrum from MHD to Electron Scales. *Phys. Rev. Lett.*, 103(16):165003, October 2009. doi: 10.1103/PhysRevLett.103.165003.

