Abstract number: S5-33
General anisotropy
30 min. invited talk

Cosmic rays in astrospheres

K. Scherer^{1,2}, A. van der Schyff ³, D.J. Bomans^{4,2}, S.E.S. Ferreira³, H. Fichtner^{1,2}, J. Kleimann¹, R.D. Strauss³, K. Weis⁴, T. Wiengarten¹, T. Wodzinski⁴

- ¹ Institut für Theoretische Physik IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, Germany
- ² Research Department, Plasmas with Complex Interactions, Ruhr-Universität Bochum, Germany
- ³ Center for Space Research, North-West University, 2520 Potchefstroom, South Africa,
- ⁴ Astronomical Institute, Ruhr-Universität Bochum, Germany

We model the cosmic ray ux in a stellar wind cavity of a O or B type star using a transport model based on stochastic differential equations. The required parameters, for example the cofficeients of the dffusion tensor, are determined from an underlying hydrodynamical model with a kinematic describtion of the magnetic field. We discuss the transport in the astrosphere of lambda Cephei with varying parameters for the transport co-efficients. We will argue that large stellar wind cavities can act as sinks for the galactic cosmci ray flux